If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-160w+425=0
a = 4; b = -160; c = +425;
Δ = b2-4ac
Δ = -1602-4·4·425
Δ = 18800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18800}=\sqrt{400*47}=\sqrt{400}*\sqrt{47}=20\sqrt{47}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-20\sqrt{47}}{2*4}=\frac{160-20\sqrt{47}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+20\sqrt{47}}{2*4}=\frac{160+20\sqrt{47}}{8} $
| 3(x+5)=4x+24+2x | | x²+3x-255=0 | | 8x+(5x-6-4x+1)=x-4) | | 3x+7=22+x | | 7(2x-7)=10x+11 | | 2(-6+5x)=9x-8 | | 5+2x-7=18 | | 4+2(t+2)=10 | | 5x-11+3x=61 | | 7^x+5=1 | | 100=20(1.2)x | | 2x+5=8x–7 | | 36-11/2x=12 | | 2+6(3x+9)=16 | | -12p^2=950 | | 4s+4s=12 | | 9x-10=4x+21 | | 6x+1=4x=21 | | H=20t^2+20 | | 7x-2=2x=8 | | 6*15=5*(5+x) | | 5x+1=2x=13 | | n/2n=1000 | | 5(x-1)=9x+31 | | 12x=432 | | 5x+20/2x-20=6/1 | | -8v-10=6(v+3) | | 2x+17=32−3x | | -6(v-3)=4v-2 | | 24;1/4=n;1/3 | | e=2*14 | | 12x-149=3x-14 |